
000NAVAL POSTGRADUATE SCHOOL
Monterey, California

Q

THESIS

RUN-TIME SUPPORT FOR
RAPID PROTOTYPING

by

MaryLou Barrett Wood

December 1988
Thesis Advisor: Luqi

Approved for public release; distribution is unlimited.DTI[1

S ELECTE
APR28

1989 u"eE,

Unclassified
Security Ciassifica:ion of t:hs page

REPORT DOCUMENTATION PAGE
I a Report Security Classification Unclassified lb Restrictive Markings
'a Security Classification Authority 3 Distribution Availability of Report

2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
-' Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization

Naval Postgraduate School I lfApplicable) 37 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)
Monterev. CA 93943-5000 Monterey, CA 93943-5000
6a Name of Fundsng/Sponsonng Organzaton 8b Office Symbol 9 Procurement Instrument Identification Number

(If Applicable)
Sc Address (city, state, and ZIP code) 10 Source of Funding Numbers

Pron Elam=u Number IProject No ITask No IWodc Unit Acces~v- N,
I I Title (Include Security Classification) Run-Time Support for Rapid Prototyping
12 Personal AuthorW . Iarv% Lou Barrett Wood
i3a Type of Report 13b Time Covered 14 Date of Report (year, month,day) 1 Page Count
Master's Thesis From To December 1988
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the De artment of Defense or the U.S. Government.
17 Cosati Codes IS Subject Terms (continue on reverse if necessary and identify by block number,

F.L:d Group Subgroup CAPS, prototyping, debugging, Dynamic Scheduler A

'9 Abstract (continue on reverse if necessary and iden:.f' b% block number-
The Computer Aided Prototyping System (CAPS) uses rapid prototypiig to quickly build an executable model of
the proposed system. This thesis discusses two aspects of the run-time suppOrt-system for CAPS. In particular, it
addresses the implementation of the error reporing functions in the CAPS debugin system and of the Dynamic

20 Distributionr'Availabilht. of Abstract 21 Abstract Security Classification

R unclassified/unltmited 0 same as report 0 DTIC users Unclassified
22, Name of Responsible Individual 22b Telephone (Include Area code) 22c Office ymk,
Luqi (408) 646-2735 52!Lqg
DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted security classification of this :x.ee

All other editions are obsolete Unclassified

Ba~a n i P mm

Approved for public release: distribution is unlimited.

Run-Time Support For Rapid Prototyping

MaryLou Barrett Wood
Lieutenant. United States Navy

B.S.. Lock Haven State College. 1975

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1988

Author: - r. -" " --
MaryLou Barrett Wood

Approved by: -
" Luqi7. Thesi Advisor

(ohn urcha e . uader

Robert McGhee, Chairman.
Department of Co puter Science

Kneale "T Marshall, DeaofInforma"- 1 N

it

ABSTRACT

The Computer Aided Prototyping System (CAPS) uses rapid

prototyping to quickly build an executable model of the proposed system.

This thesis discusses two aspects of the run-time support system for

CAPS. In particular, it addresses the implementation of the error

reporting functions in the CAPS debugging system and of the Dynamic

Scheduler.

Aacession For

NTIS GRA&I
DTIC TAB
Unannoned '
Justification

Distribution/

Availability Cds Cop,

Special •

Siii

TABLE OF CONTENTS

I. INTR ODUCTION ... 1.

A . BACKG RO U ND ... 1

B. THE SCOPE OF THE THESIS ... 4

II. SURVEY OF PREVIOUS WORK ... 5

A. COMPUTER-AIDED PROTOTYPING SYSTEM 5

B. DEBUGGING SYSTEMS ... 9

C. A PROTOTYPE IN SMALLTALK .. 12

III. THE DESIGN OF THE DYNAMIC SCHEDULER 14

A. MODIFICATION TO THE ARCHITECTURE 14

B. DESIGN OF THE DYNAMIC SCHEDULER 16

IV. DESIGN OF THE DEBUGGING SYSTEM 21

A. PURPOSE OF A DEBUGGING SYSTEM 21

B. ERROR REPORTING IN THE DEBUGGING SYSTEM 21

C. ERRORS IDENTIFIED IN THE TRANSLATOR 22

D. ERRORS ENCOUNTERED BY THE STATIC SCHEDULER 23

V. IMPLEMENTATION OF THE DEBUGGING SYSTEMS

AND THE DNYNAMIC SCHEDULER .. 29

A. PROGRAMMING ENVIRONMENT .. 29

iv

B. THE STATIC SCHEDULER AND ITS

DEBUGGING SYSTEM .. 29

1. The Static Scheduler ... 30

2. The Debugging System ... 31

3. The CreateNTCTask ... 35

C. THE DYNAMIC SCHEDULER AND ITS

DEBUGGING SYSTEM .. 37

1. Ada Constructs Important to the Dynamic Scheduler 37

2. The Dynamic Scheduler ... 43

3. The Debugging System for the Dynamic Scheduler 45

VI. CONCLUSIONS AND RECOMMENDATIONS 48

A. CONCLUSIONS 48

B. RECOM M ENDATIONS .. 49

APPENDIX A PROGRAM CODE FOR SSDEBUG 51

APPENDIX B PROGRAM CODE FOR DSDEBUGPKG 62

LIST OF REFERENCES ... 69

INITIAL DISTRIBUTION LIST ... 71

V

LIST OF FIGURES

Figure 2-1 The Prototype-Building Process 6

Figure 2-2 CAPS .. 8

Figure 2-3 Execution Support System .. 10

Figure 3-1 The Execution Support System. as Modified 15

Figure 3-2 The Dynamic Scheduler .. 16

Figure 3-3 The Static Scheduler ... 17

Figure 3-4 Coordination of Operators .. 19

Figure 4-1 A Simple Dataflow Diagram .. 22

Figure 4-2 Operator Decomposition ... 26

Figure 4-3 Errors Encountered by the Static Scheduler 28

Figure 5-1 Specification for SSDebug .. 32

Figure 5-2 Accept Statement from the Body of SSDebug 34

Figure 5-3 Example of a NonTimeCriticalSchedule 36

Figure 5-4 Example-Priority Program .. 40

Figure 5-5 Output from the Example Priority Program. 41

Figure 5-6 Example-Delay Package .. 42

Figure 5-7 Main Program With ExampleDelay Package 43

Figure 5-8 Output from Main Program With Example-Delay

Package .. 43

Figure 5-9 Specification for DSDebug. ... 45

Figure 5-10 The Dynamic Scheduler .. 47

vi

THESIS DISCLAIMER

Ada is a registered trademark of the United States Government.

Ada Joint Program Office.

vii

I. INTRODUCTION

A. BACKGROUND

In 1980. the Department of Defense incurred software costs of

$4.10 billion and hardware costs of $1.28 billion [Ref. l:p. 425]. In

1990. the Department of Defense (DOD) expects to incur software

costs of $37.99 billion and hardware costs of $5.89 billion [Ref. 1:p.

4251. Over a decade, software costs for DOD will have increased

approximately 900 percent. while hardware costs will have increased

only by approximately 460 percent. Using this calculation, software

costs for DOD are rising twice as fast as hardware costs. Furthermore.

these softwarp costs are mainly concerned with hard real-time

embedded computer systems. As the requirements for embedded

computers in DOD increase, the cost of software will increase even

more dramatically.

Software costs will continue to rise for two reasons. First. as

advances occur in hardware technology. machines will become less

expensive. Second. more and more complex applications are becom-

ing possible candidates for automation. But as the complexity of

applications increases, the complexity of the associated software

development will become exponentially larger. Similarly, as the com-

plexity of software development increases, the cost for that develop-

ment will also dramatically increase.

I

Software today suffers from not only high development costs but

also poor quality. Symptoms of this poor quality are the lack of:

1. Responsiveness. Computer-based systems often do not meet
user needs.

2. Reliability. Software often fails.

3. Modifiability. Software maintenance is complex. costly, and
error prone.

4. Timeliness. Software is often late and frequently delivered with
less-than-promised capability.

5. Transportability. Software from one system is seldom used in
another. even when similar functions are required.

6. Efficiency. Software development efforts do not make optimal

use of the resources involved. [Ref. 1 :p. 8

A means must be found to reduce the prohibitive cost of software

and simultaneously to Increase the quality of software. Established

techniques for developing software have proven incapable of accom-

plishing these improvements. Prototyping might prove to be one such

means.

Prototyping is an engineering-inspired design approach in which

an analyst quickly builds an executable system that may not be com-

plete. This prototype can be demonstrated to users and then easily

modified. Although prototypes can be more rapidly developed by using

nonprocedural languages. generally, the prototype must be rewritten

in a procedural language to improve efficiency or add features.

[Ref. 2:p. 12]

There are several facts which indicate the advantages of proto-

typing. Users are not always aware of their requirements for a system.

2

If a user does know a requirement. he might not know the best

method to realize that requirement. Development of the prototype can

be started after only general objectives have been identified. After the

prototype is developed. it is shown to the user. The user can thus

observe the execution of the prototype and make recommendations

for modifications. The prototype is modified to reflect the recommen-

dations and then again shown to the user. This process of user obser-

vation and of modification is repeated until the system meets the

user's requirements. But since the user is now more actively involved

and is involved earlier in the design process. the development of the

prototype occurs more rapidly and efficiently.

When prototyping is combined with automated software tools in

order to develop the system even more quickly. that process is known

as rapid prototyping. One such system is the Computer-Aided Proto-

typing System (CAPS). It combines rapid prototypng with automatic

program generation.

Some of the software tools included in CAPS are an execution

support system, a rewrite system, a syntax-directed editor with

graphics capabilities, a software base. a design database, and a design

management system [Ref. 3:p. 66.

By using both rapid prototyping and automatic program genera-

tion. CAPS will be able to develop a system that is responsive, reliable.

modifiable. timely. transportable. and efficient. CAPS is discussed in

greater detail in Chapter II.

3

B. THE SCOPE OF THE THESIS

The scope of this thesis is the debugging system and the Dynamic

Scheduler in CAPS. This thesis implements the debugging systems for

the Static Scheduler and the Dynamic Scheduler. This thesis also dis-

cusses an implementation of the Dynamic Scheduler.

Chapter II of this thesis discusses CAPS and the work accom-

plished on it to date as well as current work on several different

debugging systems.

Chapter III discusses the Dynamic Scheduler with particular

attention to how it coordinates execution of the critical and noncriti-

cal operators. Chapter IR discusses the design of the debugging sys-

tems. Chapter V addresses the implementation of the debugging

systems and of the Dynamic Scheduler. Chapter VI contains the con-

clusions and recommendations for future work.

4

I. SURVEY OF PREVIOUS WORK

A. COMPUTER-AIDED PROTOTYPING SYSTEM

CAPS is an en'ironment designed to automate prototyping of large

software systems with real-time constraints. The environment consists

of a group of tools whose collective purpose is to provide a means to

write the specifications of a software system, to implement those

specifications, and to execute the resulting prototype. Most proto-

typing systems perform these functions. CAPS is different in that it

combines rapid prototyping with a variant of automatic program

generation. This combination makes the process of developing the

prototype more timely. efficient, and reliable.

CAPS includes a database of reusable software components. When

a specification for the system has been Identified. the database is

searched for a matching specification. If one is found, the component

for that matching specification is retrieved. If no match is found, the

specification must be decomposed. The database is again searched for

matching elements. If the specification cannot be decomposed any

further, its implementation must be coded manuall\. The significance

of being able to retrieve components is that the prototype is developed

more rapidly. Time need not be spent repeatedly implementing the

same specifications in different systems. Figure 2-1 [Ref. 3:p. 671

illustrates this process of decomposition and retrieval.

5

Identify
Specifications

Decompose Rewrite
Specifications

Search
Database

Leetriev

Lv! None Number On

De om oito Found?

es-' Many

CooeCopnt

Retrieve

Component

Figure 2-1. The Prototype-Building Process

The major tools in the environment are: a User Interface, a speci-

fication language called the Prototyping System Description Language

(PSDL). an Execution Support System, a Design Management Base. a

6

Software Base, and a Design Data Base. The relationships among these

tools are shown in Figure 2-2 [Ref. 41. A general description of each of

these tools follows. For more information regarding a specific tool, or

CAPS in general, please refer to Reference 5.

The User Interface serves two functions. First, it is the means by

which the user identifies the specifications for the system. The User

Interface includes a syntax-directed editor and a graphics editor to

enable the user to enter these specifications. Secondly, it serves as the

control unit for the development. When the user requests an action, it

is the User Interface which initiates the action. For example, when the

user requests the execution of the prototype, the User Interface calls

the Execution Support System, which is the process to accomplish

that request. Reference 6 contains a description and implementation

for the User Interface.

PSDL is the language used to develop specifications for the proto-

type and was designed specifically for CAPS. PSDL supports the devel-

opment of prototypes for large systems by providing a computational

model that reflects the designer's view of real-time systems. The lan-

guage supports operators, data streams, and abstractions . Reference 5

contains a detailed description of PSDL. [Ref. 5:p. 111

PSDL also supports hierarchical decomposition of operators

through data-flow diagrams. These diagrams show the connectivity of

the operators. Operators are connected through data streams which

contain the data values required by the operators. The User Interface

7

User

Figure 2-2. CAPS

contains a graphics editor to draw the data flow diagrams. Reference 7

discusses and implements the graphics editor.

The Software Base contains the reusable software components. On

the other hand, the Design Data Base contains information on the

design of a prototype and keeps copies of the different versions of a

prototype. Reference 8 discusses the design of the Software Base.

The Design Management Base is the tool which organizes and

retrieves components from the Software Base and which manages the

different versions of prototypes in the Design Data Base. Before the

management base stores or retrieves components or prototypes, the

specifications for the components or prototypes must be normalized

by the Rewrite Subsystem. The normalization of specifications is

accomplished by transforming specific words in the specification to

standard ones. For example, if the word output appears in the

specification, it would be converted to the word write. Normalization is

necessary because it reduces the time to search the databases. For

8

CAPS to be practical, the time to retrieve a component must be signif-

icantly less than it would be to code that same component.

The Execution Support System contains three processes: the

Translator, the Static Scheduler, and the Dynamic Scheduler. The

Translator transforms the PSDL source code into executable code for

both the time-critical and the non-time-critical operators. The Static

Scheduler creates a schedule by which the time-critical operators will

be executed. The Dynamic Scheduler then coordinates the execution

of the non-time-critical and the time-critical operators. References 9

and 10 discuss the design and implementation of the Translator.

References 11. 12, and 13 discuss the design and implementation of

the Static Scheduler.

As envisioned in Reference 11, the Dynamic Scheduler is invoked

when the user asks to exercise the prototype. The Dynamic Scheduler

then invokes the Translator and the Static Scheduler. The Translator

produces executable Ada code, and the Static Scheduler produces a

static schedule which is also executable. These two outputs must be

compiled and linked together. The resulting executable code is an

input to the Dynamic Scheduler. Repeated from Reference 11, Figure

2-3 illustrates the procedure described above.

B. DEBUGGING SYSTEMS

Debugging is one of the most time-consuming activities associated

with programming. When an error is encountered during testing, it

must be identified, located, and corrected. After that. the program

must be recompiled and tested again. If only one error is detected at a

9

time, the debugging process can rapidly mire in this cycle of identifi-

cation and correction. For this reason, much research is being done to

improve the capability of a debugging system not only to identify

errors but also to locate and correct them.

SPSDL Source 4 se

FileInefc

Ado *

Executable ExecutableCode Code

Figure 2-3. Execution Support System

Isoda, Shimomura, and Ono [Ref. 141 have developed a debugger

for Ada called the Visual and Interactive Programming Support (MIPS).

VIPS uses graphics to show the static and dynamic behavior of a pro-

gram during execution. VIPS presents different views of the execution

in windows. These windows are: data, program text, block structure.

10

acceleration. figure definition, interaction, and editor. The data win-

dow is used to show which procedures or functions have been invoked

and to show the calling relationship among these units. The program

text window contains the source code and, during execution of the

program, highlights the active line. The block structure window

illustrates the nesting relationship of subprograms and internal pack-

ages. The acceleration window is used to display and to change the

execution speed of the program. The figure definition window displays

a list of variables that may or may not be stipulated by the user. The

interaction window is used when the user must respond to prompts

from the program. Lastly. the editor window is used to edit the source

program. The quantity and quality of information that can be displayed

in these windows greatly increases the ability of a programmer to

locate and correct errors.

Seviora [Ref. 15] states that debugging involves two main phases:

identification and repair. Knowledge-based debugging systems can use

three approaches to debugging a program: the program-analysis. I/O-

based, and internal-trace-based. The program-analysis approach com-

pares the content of the program to its specification to determine

whether they are consistent. In order to do this, the system performs

a detailed analysis of the program. This detailed analysis takes a great

deal of time and, hence, these knowledge-based debugging programs

are only practical for small programs.

The I/O-based approach examines only those portions of code in

which a bug might occur. To determine what the problem is, systems

S 11

implementing this approach compare the actual output with what was

expected. The system attempts to localize the bug in the section being

examined. I/O-based systems are not successful in locating the error if

the code has several errors in it, especially if the errors interact.

The internal-trace-based system compares the program code to

the output. Certain characteristics of the program are tagged and

traced through execution. This approach serves only to localize the

error within the program code.

Knudsen [Ref. 16] uses the sequel concept to declare an exception

and its handler together. He defines the sequel as an abstraction of the

goto statement. A sequel defines the name and handler of an exception

and its termination level. There are three types of sequels: the pre-

fixed sequel, which permits the specification of smooth termination:

the virtual sequel, which augments a handler in inner blocks; and the

default sequel. which makes default exception handling possible and.

hence, increases the possibility of smooth termination.

C. A PROTOTYPE IN SMALLTALK

Diederich and Milton [Ref. 17] state that Smalltalk is more than a

programming language. It is, in a sense, a tool that encourages proto-

typing. Smalltalk encourages experimentation with prototyping

because the designer is not caught in the midst of detail and because

the designer can make vast changes to a system with a good chance of

recovery. In Smailtalk, messages form modules which are simpler and

easier to understand. Interfaces between these modules are not nec-

essary because objects are passed as arguments to messages. Smalltalk

12

has numerous predefined objects and messages. These predefinitions

encourage prototyping because a database already exists that need only

be adapted to the user's needs. Other features of Smalltalk that

resemble prototyping include the ease of implementing alternatives:

any changes that are made are equivalent to changing specifications

vice changing code.

13

III. THE DESIGN OF THE DYNAMIC SCHEDULER

A. MODIFICATION TO THE ARCHITECTURE

There is a problem with the conceptualization of the Dynamic

Scheduler as it was presented in Chapter II. Because the Translator

uses the Kodiyak generator to produce the executable code for the

operators. the Dynamic Scheduler, itself an executable Ada program.

cannot invoke the Kodiyak Generator. Also, the Static Schedule, an

output of the Static Scheduler, is an input to the Dynamic Scheduler.

This input represents the schedule by which the critical operators are

to be executed. However, this schedule cannot be executed by the

Dynamic Scheduler until it is compiled and linked to the output of the

Translator. Herein lies another problem. Once an Ada program begins

execution, it cannot be suspended to compile an output from one of its

units and then resumed to begin execution of that compiled unit. For

these reasons, the Execution Support System and the Dynamic

Scheduler. in particular. have been modified as reflected in Figure 3-1.

The Execution Support System is revised as follows:

1. The Translator is distinct from the Dynamic Scheduler and
therefore is not invoked by it. It is a separate process which can
execute in parallel with the Static Scheduler.

2. The Static Scheduler is now part of a system containing the
Static Scheduler, Its debugging system, and the process by which
the non-time-critical operators are transformed into executable
code.

3. The Dynamic Scheduler which coordinates the execution of the
critical and non-critical operators and its debugging system form
another distinct part of the Execution Support System.

14

CUserInterface

It is imprtant tha eachsoftheaovebitntfo h tes

TS tatic xecuted

met hs w untospouethe upt:tEexecutabo de

r. tScheduler Supporta t lExecution System

e oLinker m i

j 5 Dynamic

a
S Scheduler

Figure 3-. The Execution Support System, as Modified

It is important that each of the above be distinct from the others.

The Translator and the Static Scheduler can then be executed in

parallel. either in a single processor or in a multi-processor en%iron-

ment. These two functions produce three outputs: the executable code

for the operators. the Static Schedule for the time-critical operators.

and the listing of procedure calls for the non -time -critical operators.

These outputs must be compiled and linked together before the

Dynamic Scheduler can be invoked. The User Interface in CAPS is

responsible for invoking the Static Scheduler, the Translator. and the

Dynamic Scheduler. The User Interface will also ensure that the out-

15

puts above are compiled and linked before invoking the Dynamic

Scheduler.

B. DESIGN OF THE DYNAMIC SCHEDULER

The Dynamic Scheduler consists of three processes: the Static

Schedule, the non-time-critical operators, and a debugging system.

The relationships among these three are shown in Figure 3-2.

Dynamic
Scheduler

Static Non-Time- DebuggingS d CriticalOperators

Figure 3-2. The Dynamic Scheduler

The Static Schedule is assumed to have the format shown in Fig-

ure 3-3. Figure 3-3 shows the minimum amount of information which

must be specified for each operator in the Static Schedule. The vari-

able "Exception-Operator" is necessary to inform the debugging sys-

tem which operator experienced a run-time error. The third line of

Figure 3-3 is a procedure call to the code produced by the Translator.

16

"TL" is the package from the Translator which includes the execut-

able code for the operator. This is the line that actually executes the

operator. The if-elsif statement is necessary to coordinate the different

actions which occur based on the time. These actions are explained -

below. The Ada constructs in Figure 3-3 will be explained in

Chapter V.

ExceptionOperator := NameOfNextOperator;
CurrentTime:= CALENDAR.CLOCK;
TL.NameOfNextOperator;
if CurrentTime > NextStartTime then

DS Debug. Runtime-M ET-Failu re(E xc eption-Operator);
elsif CurrentTime < NextStartTime then

delay NextStartTime - Current-Time;
end if;

-The same lines are necessary for each operator in the Static
-- Schedule.

Figure 3-3. The Static Schedule

The Dynamic Scheduler ser-es to coordinate execution of the

time-critical and non-time-critical operators. The time-critical opera-

tors are executed through the Static Schedule. Initially, the Static

Schedule is invoked. It must be the process which executes first

because its first operator is assumed to begin at time zero.

After the first operator finishes execution, the current time is

compared to the time the next critical operator must start execution.

Depending on the results of that comparison, one of three actions

might occur:

17

1. If the current time is less than the start time for the next critical
operator, the static schedule must suspend execution until the
next start time, and then the non-time-critical operators begin to
execute. At the time the next critical operator must begin execu-
tion. the non-time-critical operators are suspended and the
Static Schedule is resumed. When the processes resume execu-
tion, they do so at the point where they were suspended.

2. If the current time is equal to the start time for the next critical
operator. then the Static Schedule continues execution.

3. If the current time is greater than the start time for the next
critical operator. then the Static Schedule notifies the debugging
system in the Dynamic Scheduler that a run-time execution error
has occurred. The user is queried as to whether to continue exe-
cution of the prototype. Regardless of his decision, information
about the error is written to a file. In this way, a historical record
is maintained. After the prototype has finished execution, either
normally or abnormally. the user is able to update the execution
times for the pertinent operators.

An example may clarify this coordination. Figure 3-4 shows a

Static Schedule and a listing of non-time-critical operators. For the

Static Schedule, the number on the left side of each solid horizontal

line represents the time that the succeeding operator must start

execution. For example. operator A must start at time 0. B must start

at time 15. C at time 22, and so on. On the other hand, the non-time-

critical operators are executed sequentially as time allows.

When the Dynamic Scheduler is invoked, operator A will begin to

execute. because it must start at time 0. But suppose the operator

completes execution at time 12 (represented by the dashed line in

Figure 3-4). Operator B does not execute until tUme 15. Thus. there is

an interval of three time units in which the Dynamic Scheduler may

execute the non-time-critical operators. Before the first non-time-

critical operator may" begin execution, the Dynamic Scheduler must

18

suspend the execution of the Static Schedule and save its state of exe-

cution. Operator X is then executed. The non-time-critical operators

continue to execute until time 15. At that moment, the Dynamic

Scheduler suspends execution of the non-time-critical operators.

saves their state, and then restores the state of execution for the

Static Schedule. In this way. the Static Schedule is resumed at the

point where operator A ended and operator B is to begin execution.

Non-1Tm-
Static Critical

Schedule Operators

C A
X

.................... . ,
C

D

Figure 3-4. Coordination of Operators

Now suppose operator B completes execution at time 22. Since

this is the time operator C must begin execution, the Static Schedule

continues to execute. However, operator C completes execution at

time 45-after the required start time (40) for operator D. In this case.

the Dynamic Scheduler must suspend execution of the Static Sched-

ule. save the state of the execution, and then Inquire of the user

whether to continue. If the user wants to continue, the Dynamic

Scheduler must adjust the time backwards to the start time required

19

for operator D. restore the state of execution for the Static Schedule,

and then resume execution of the Static Schedule.

The process described above continues until all operators have

executed.

20

IV. DESIGN OF THE DEBUGGING SYSTEM

A. PURPOSE OF A DEBUGGING SYSTEM

The purposes of debugging systems are to identify errors and. if

possible, correct them. The latter is the more difficult purpose to

accomplish. If an error is syntactic in nature, it is fairly easy to correct.

For example, if a variable is undeclared, it is easy to correct that error

by simply declaring the variable in the proper manner. If, on the other

hand, the error is semantic in nature, the error is harder to correct.

For example. if an end statement is missing, only the user knows the

correct location for it. It is possible in CAPS to have both syntactic and

semantic errors. The debugging system for CAPS must then be capable

of handling both types of errors.

B. ERROR REPORTING IN THE DEBUGGING SYSTEM

Because the Static Scheduler and the Dynamic Scheduler are dis-

tinct from each other, each scheduler must have a debugging system

to process those errors encountered by each scheduler. The debug-

ging system in the Static Scheduler will process those errors encoun-

tered while creating a Static Schedule. The debugging system in the

Dynamic Scheduler will process those errors that occur when the

operators execute.

Both debugging systems will report errors in a similar manner.

When an error has been encountered, the debugging system should

notify the user that an error occurred and the nature of that error. If it

21

is possible to correct or adjust the error, the user should be queried as

to whether he wants to terminate or to continue execution. Regardless

of the decision, information pertaining to the error should be written

to a file. This information should contain sufficient information for the -

user to understand the error and, possibly, to correct the error.

C. ERRORS IDENTIFIED IN THE TRANSLATOR

When the Translator transforms the PSDL source code into exe-

cutable code, it identifies three possible errors. Figure 4-1 shows a

simple data-flow diagram. The arrow entering the bubble represents a

data stream serving as an input source. The bubble represents an

operator. The arrow leaving the bubble represents a data stream serv-

ing as an output source. When an operator attempts to read the data

stream, it expects to find a value there. If no value is present on the

data stream, an error exists which must be processed by the debug-

ging system. This error is called Buffer Underflow. Similarly, if the

operator is placing a value in the output data stream, it expects the

data stream to have room for it. If the data stream is full, an error

exists. This error is called Buffer Overflow.

Figure 4-1. A Simple Dataflow Diagram

22

PSDL permits only one exception per data stream. If a data stream

has an exception in it and another exception arrives, an error has

occurred that must be processed by the debugging system. This type

of error is called Exception Error.

The Translator only identifies where these errors may occur. The

BufferUnderflow, BufferOverflow, and ExceptionError actually

occur only when the operators execute. Therefore, these errors are

processed by the debugging system within the Dynamic Scheduler.

D. ERRORS ENCOUNTERED BY THE STATIC SCHEDULER

The Static Scheduler creates a Static Schedule by which the time-

critical operators must execute. This schedule ensures that all timing

constraints are met. A time-critical operator may have the following

timing constraints:

1. A maximum execution time (MET) stating the length of time
required by the operator to execute.

2. A maximum response time (MRT) stating how much time passes
from the arrival of input values to the placement of the output
values into the data streams.

3. A minimum calling period (MCP) stating the time between

arrivals of input.

All time-critical operators have a maximum execution time. Only

sporadic operators have maximum response times and minimum call-

ing periods. If an operator has a maximum response time, it must also

have a minimum calling period. Sporadic operators are executed when

new input arrives; periodic operators execute at regular intervals

called periods.

23

During the process of creating a Static Schedule, the Static

Scheduler must examine the timing constraints to ensure they are

valid for the operators. If the constraints are not valid, an error is

reported to the debugging system. Timing constraints are valid if the

following relationships occur:

1. The MET for an operator is less than its MRT and MCP. Other-
wise, the operator may not complete execution before it must be
executed again.

2. The MCP for an operator must be less than its MRT. If it is not,
the operator may not produce an output before it must execute
again.

3. If an operator has an MET, all operators in its decomposition
must have METs.

4. If an operator has an MET, the MET for each operator in its
decomposition must be less than or equal to the MET of the
operator at the upper level.

5. If an operator has an MET, the sum of the METs of the operators
in its decomposition, if applicable, must be less than or equal to
the MET of the operator at the upper level.

6. If an operator has a period, MRT. or MCP, it must have an MET.

7. The MET for an operator must be less than its period. Otherwise.
the operator may not complete execution before its next execu-
tion time occurs.

If any of these relationships is invalid, an error results which must

be resolved before the Static Scheduler can continue. These errors are

called METNotLessThanMRT, METNotLessThanMCP, MCP_

NotLessThanMRT. MET-Required, METGTParent, METSum_

GTParent, CritOp-LacksMET, and MET NotLessThanPeriod.

The debugging system has two options with regard to processing

these errors: terminate the Static Scheduler or correct the error. If

24

the error is to be corrected, the user must be queried as to the proper

value for the invalid constraint. Changing the value for a constraint on

an operator at one level of decomposition may affect constraints for an

operator at an upper level of decomposition. Consider Figure 4.2. The

METs of the operators in the second level of decomposition are valid;

their sum is less than or equal to the MET for operator A. However.

the sum of the METs for operators E and F is greater than the MET

for operator D. The simple way to correct this error would be to adjust

the MET of operator D. By changing the value of the MET for operator

D to 45ms, the value of the MET for operator A is now invalid. This

rippling effect must be considered when correcting timing con-

straints. Since the timing constraints for operators at upper levels of

decomposition must be reexamined each time a constraint has been

altered at a lower level, large amounts of processing time may be spent

correcting timing constraints. For this reason, after a specified num-

ber of corrections to timing constraints, if the timing constraints are

still invalid, the Static Scheduler should notify the debugging system

of the situation and processing should be terminated. This error is

called ExcessiveConstraintsAltered.

The debugging system should maintain a record of the changes

that were made to the timing constraints. After the prototype has fin-

ished execution, either normally or abnormally, the user is then able

to use this historical record to update the PSDL source file.

25

A

80ms

B C D

25ms 20ms 35ms

E
F)

15ms 30ms

Figure 4-2. Operator Decomposition

The Static Schedule may encounter other errors while creating a

static schedule. It may not be able to locate the operator to be sched-

uled first, or it may not be able to locate the successor of an operator.

These errors are called NoInitialLinkOp and NoMatchesFound,

respectively.

In order to schedule the operators, the periods of the operators

must be exact multiples of some base period. This base period must be

determined. An error, called NoBaseBlock, results if the base period

cannot be determined.

26

The following errors may occur when the Static Scheduler is cal-

culating the times that the operators must start execution:

1. The MET of an operator is greater than or equal to half of the
period for the operator.

2. The total time that the operators need to complete execution is
greater than the length of the harmonic block (the set of opera-
tors whose periods are multiples of some base period).

3. The ratio of the MET divided by the period for an operator,
summed over all the operators, is greater than the number of
processors being used.

4. Given the timing constraints, a Static Schedule is not possible.

The first three errors above are called FailHalfPeriod,

BadTotaliTime, and RatioTooBig. The fourth error has been

divided into three errors depending on when the determination has

been made that a static schedule is not possible. These errors are

called OverTime, InvalidSchedule, and ScheduleError.

There is one more error associated with the Static Scheduler.

This error is the RuntimeMETFailure. When the Static Schedule is

actually being written by the Static Scheduler, the completion time of

the current operator is compared against the start time for the suc-

ceeding operator. If the completion time is after the start time. the

debugging system is notified of the error. The RuntimeMETFailure

error will occur only during execution of the Static Schedule, and thus

this error will be processed by the debugging system in the Dynamic

Scheduler.

Figure 4-3 lists all of the errors that can be encountered by the

Static Scheduler while creating a Static Schedule. Items 1 through 13

27

were identified in Reference 11. Reference 13 changed the name of

Item 2 from "METhEqualsPeriod" (as originally given) to its present

name. This change occurred because in a single-processor environ-

ment it is permissible for the MET to be equal to the period. The only

requirement is that the MET of an operator not be greater than its

period. If it is greater, there is no guarantee that the operator will

complete execution. Items 14 through 17 were identified in Refer-

ence 13.

1. METNotLessThanMRT
2. METNotLessThanPeriod
3. NoInitialLinkOp
4. NoMatchesFound
5. MCP_NotLessThanMRT
6. METNotLessThan_MCP
7. NoBaseBlock
8. FailHalfPeriod
9. BadTotalTime
10. RatioTooBig
11. OverTime
12. InvalidSchedule
13. ScheduleError
14. METRequired
15. MET GT_Parent
16. METSumGTParent
17. Crit_.OpLacksMET
18. Escessive_ConstraintsAltered

Figure 4-3. Errors to be Processed by the

Static Scheduler's Debugging Systems

28

V. IMPLEMENTATION OF THE DEBUGGING SYSTEMS
AND THE DYNAMIC SCHEDULER

A. PROGRAMMING ENVIRONMENT

The programming environment for the implementation is the

Unix operating system run on a Sun workstation. The programming

language used is Ada. When active, a debugging system will have a

dedicated window on the screen to interact with the user. This

implementation operates in a single-processor environment.

B. THE STATIC SCHEDULER AND ITS DEBUGGING SYSTEM

The Static Scheduler and its debugging system are implemented

as two tasks: the StaticScheduler and SSDebug, respectively. These

two tasks are dependent on a main program which also includes a

procedure. the CreateNTCTask. Since SSDebug must cooperate

with the StaticScheduler, they were implemented as tasks because

this cooperation among processes is a purpose for tasks. These two

tasks cooperate in order to process errors encountered while creating

a Static Schedule. The CreateNTCTask is implemented as a proce-

dure because it only needs to be executed if the Static- Scheduler was

successful in creating a Static Schedule.

This implementation of the debugging system for the Static-

Scheduler does not correct errors. When the Static_Scheduler

encounters an error during processing, it notifies the debugging sys-

tem and then terminates execution. The debugging system will

29

process the error by explaining the error to the user, and then it too

will terminate. Appendix A contains the code for the implementation

discussed in this section.

1. The Static Scheduler

Reference 14 implemented the task called StaticScheduler.

Since Appendix A includes that task, a brief discussion of the task's

activity follows. For more details, refer to Reference 13. Three phases

of the Static Scheduler have been implemented. The Read_PSDL

phase, implemented on the Kodiyak Generator, produces a text file

consisting of the names of the operators, the timing constraints, and

the link statements.

The FILEPROCESSOR package contains two procedures,

SEPARATEDATA and VALIDATEDATA. The former procedure reads

the text file produced by the Kodiyak Generator and separates the

time-critical operators. the non-time critical operators, and the link

statements. The time-critical operators and their timing constraints

are placed in a data structure called an NARYTREE. The names of the

non-critical operators are written to a text file called NONCRITS.

The link statements are placed into a linked list.

The VALIDATEDATA procedure examines the NARYTREE

to determine whether the timing constraints for the operators are

valid. If an invalid constraint is identified, an exception is called. The

exception then notifies SS-Debug of the error. An exception is used so

that the task terminates gracefully. When an exception is identified,

the system looks at the unit in which the exception was identified. If

30

the exception is not found there, the system terminates that unit and

goes to the next outer scope to locate the exception. If the main pro-

gram is reached without locating the exception, the system terminates

execution and reports that an exception was not located.

The TOPOLOGICALSORTER package contains two proce-

dures. CREATELISTS and SORTREMAININGOPERATORS. The

former procedure locates the operator which must execute first.

SORTREMAININGOPERATORS identifies those operators which

must follow each other. Errors are processed in the same manner as

that described for the FILE-PROCESSOR package.

The task called the StaticScheduler is formed by importing

the FILE-PROCESSOR and the TOPOLOGICAL-SORTER packages. The

body of the task then calls the procedures in the packages. When the

implementation of the StaticScheduler is completed, the remaining

packages and procedure calls will be included in the task

StaticScheduler.

2. The Debugging System

As mentioned previously, the debugging system for the

Static-Scheduler is implemented as a task named SSDebug. The

cooperation between SSDebug and the StaticScheduler is known in

Ada as a rendezvous. A rendezvous occurs when one task calls an entr3,

in another task. The entry statements for a task are located in its

specification. Each entry statement in the specification has a corre-

sponding accept statement in the body of the task. The accept state-

31

ment lists the action or actions to be taken for the entry. The accept

statement may be either a single statement or a compound statement.

In SSDebug, the entry statements are the name of the errors

listed in Figure 4-3, with the exception of the error ExcessiveCon-

straints-Altered. This error will occur when numerous corrections

have been made to the timing constraints. Since SSDebug does not

correct any errors, Excessive-ConstraintsAltered is not imple-

mented. The specification for task SS...Debug is shown in Figure 5-1.

For those errors triggered by a specific operator, the name of that

operator is provided as the value to the parameter Exception-

Operator.

task SS -Debug is
entry MET_Not_Less_Than_MRT (Except ion-0pe rotor :VSTRING);
entry METNot..Less_Thon_Period (Exception_.Operotor :VSTRING):
entry Nojlnitial_Link-0p.
entry NoMotchesjFound (E xc eptionOpe rotor -. WSRING);
entry MCP_Not_Less_Than_MRT (ExceptionOperator VSTRING):
entry MEL.Not_.Less_Than_MOP (Exce ptionOpe rotor VSTRING),
entry No_Base_Block:
entry Fail Half Period (ExceptionOperator :VSTRING);
entry BadTotalTime.
entry RalioTooBig.
entry Overjime:
entry InvalidSchedule;
entry Schedule_Error:
entry METRequired (ExceptionOperator :VSTRING);
entry MET_GT_Paren)t (ExceptiornOperator : VSTRiNG):
entry MET_Sum_GTParent (Except ion-Operato r : VSTNG);
entry CritOpLocksMET CException_..Operator : VSTRING);
entry Static-Scheduler-Done;

end SS&Debug;

Figure 5- 1. Specification for SS...Debug

Figure 5-1 also indicates that the specification for SSDebug

includes one other entry statement. This entry is called Static_

32

SchedulerDone and is called by the StaticScheduler task when a

schedule of time-critical operators has been successfully created.

SS.Debug then knows the Static Scheduler has terminated and,

hence, it too should terminate.

Each of the entries in the specification has a corresponding

accept statement in the body of SSDebug. Because each entry is pro-

cessed in a similar manner, each accept statement is similar. Because

there are two actions to be performed, the accept statements are

compound. Additionally, the accept statements are located inside a

select loop. When different rendezvous can occur at the same time, a

select loop permits SS_Debug to select the accept statement for the

current rendezvous. The loop is then re-started to await the next ren-

dezvous. Although in this implementation only one accept statement

will be executed, future implementations may choose to correct errors

and then the possibility for more rendezvous may occur. Therefore.

this method of implementation was chosen with an eye to the future.

The actions to be performed in the accept statement are

shown in Figure 5-2. Because each accept statement is similar. only

one is shown for illustration purposes. The first action taken is to

assign the value of true to the variable ErrorExists. The value of this

variable is a signal to continue execution (if false) or to terminate exe-

cution (if true). The next action is to call a local procedure to print the

information pertaining to the error. The explanation of the error and

the name of the operator causing the error, if applicable, are written

to a file called Information. The accept statement is exited, followed

33

by the exit from the select. A determination is then made to exit the

loop based on the value of the variable ErrorExists. If the value of that

variable is true, SS_Debug is terminated.

loop
select

accept NoInitialLinkOp do
ErrorExists := true;
Print-No-Initial LinkOp.Message (Information);

end No_InitialLink-Op;

end select;

end loop;

Figure 5-2. Accept Statement from the Body of SSDebug

The implementation of the accept statement for Static

SchedulerDone is only slightly different than that for the other entry

statements. The code for StaticSchedulerDone also has two actions.

The first action is to assign the value of true to the variable Static_

SchedulerFinished. Like ErrorExists, this variable is used to deter-

mine whether the task should be terminated. The second action in the

accept statement is to call the procedure CreatNTCTask. This pro-

cedure is described in the next section.

34

In summary, SSDebug is a task whose main body consists

mainly of a select loop which contains an accept statement for each

entry. The declarative portion of the task body contains the proce-

dures to print the error messages.

3. The CreateNTCTask

The CreateNTCTask is a procedure declared in the main

program. It is called from within SSDebug. Because it is only required

to execute if a Static Schedule has been created, the most logical time

to have it called is after the StaticScheduler has completed. It could

be called in the main body of the program, but this would require the

main program to monitor the StaticScheduler for termination. This

monitoring would be in the form of a "busy wait" which wastes pro-

cessing time. It is more efficient and more logical to have the

CreateNTCTask called by SSDebug.

The CreateNTCTask has the sole function of producing a

file called NonTimeCrits.a. This file will contain the specification

and body for an Ada package called NonTimeCritsPKG. Inside this

package is the specification and body of a task called NonTime_

CriticalOperators. It is important that this package compile and that

the included task be capable of executing.

The CreateNTC Task creates the package by writing the

necessary verbiage to the file. The names of the operators which must

be written to the output file are located in a file called NONCRITS.

This is the file produced in the Static-Scheduler. The names of the

operators in the file must be converted to procedure calls. Because the

35

code for these procedure calls is located in the package produced by

the Translator, the names of the operators must be appended to the

package name. If the NONCRITS file is empty. the CreateNTCTask

will not write any procedure calls. The last action taken is a call to

DSDebug to notify the debugging system in the Dynamic Scheduler

that all non-time-critical operators have executed.

Figure 5-3 is a sample output from the CreateNTCTask.

Note the verbiage and format of the file. It is similar to the style a pro-

grammer would use and should be capable of being compiled. Observe

that the specification for the task includes a pragma. This pragma is

important when the task is ready to be executed in the Dynamic

with TL; --Translator package
with DSDebugPKG; --Debugging system

package NonTimeCritsPKG is
task NonTimeCriticalOperators is

pragma Priority (1);
end NonTimeCriticalOperators;

end NonTimeCrits PKG;

package body NonTimeCritsPKG is
task body NonTimeCriticalOperators is

begin
TL. FirstOperator;
TL.Second-Operator;
TL.Thi rd-Operator;
DSDebug.NonTimeCriticalOperatorsDone;

end NonTimeCritical_Operators;
end NonTimeCritsPKG;

Figure 5-3. Example of a NonTimeCriticalSchedule

36

Scheduler. The section on the Dynamic Scheduler will explain why

this pragma is necessary.

In summary, the main program consists of the StaticSched-

uler and the SSDebug tasks and the CreateNTCTask procedure.

When the main program terminates, there will either be two files, one

containing a task for the Static Schedule and one containing a task for

the non-time-critical operators, or a file containing an error message.

If created, the packages will be imported by the Dynamic Scheduler.

C. THE DYNAMIC SCHEDULER AND ITS DEBUGGING SYSTEM

1. Ada Constructs Important to the Dynamic Scheduler

Ada offers facilities which can directly influence the imple-

mentation of the Dynamic Scheduler. The more important of these

facilities are: the library unit CALENDAR, the sub-program task unit,

the pragma PRIORITY, and the reserved word DELAY. Each of these

features contributes significantly to the method in which the Dynamic

Scheduler can be implemented.

In Ada, there is a library unit called CALENDAR. This unit

prov.ides the means to use real time in a program. The unit is a pack-

age consisting of the data types DURATION and TIME, and of several

procedures which permit manipulation of time. Manipulation of time

is critical in applications involving real-time embedded systems.

DURATION is a fixed-point type so calculations can be performed

without losing accuracy. The procedures included in CALENDAR

enable the programmer to add and subtract time, to compare times

against each other, to set time, and to split time into Its component

37

parts, i.e., month, day, year, and seconds. Again, these operations are

critical to embedded systems which monitor time.

Ada also includes tasks which are program units that allow

processes to execute in parallel. Tasks also permit cooperation among

themselves. This cooperation is particularly important for applications

which must communicate with physical systems in real time.

Tasks in Ada have two parts-the specification and the body.

The specification is used to describe how a task cooperates with other

tasks. The body of a task describes the action to be performed by the

task. A task is activated at the end of the parent's declarative section.

The body of the main program is considered to be an undeclared task

and, as such, is executed first. The dependent tasks are then executed

in an unpredictable manner. The execution of tasks is time-shared so

that each task is given an opportunity to execute.

In the Dynamic Scheduler, the StaticSchedule and the Non_

TimeCriticalOperators must operate in conjunction with each other.

While the StaticSchedule is executing, the other task must be sus-

pended but ready to execute. At other times, the NonTimeCriti-

calOperators may be operating and the StaticSchedule suspended

awaiting some action. Therefore to implement these processes as

tasks is appropriate.

The order in which tasks are executed can be controlled by

the pragma PRIORITY. A pragma notifies the compiler of comments

which are not part of the program. These comments serve as instruc-

tions to the compiler. Some of the instructions may include when to

38

start a new page for a listing, when and what to optimize, or whether

to list sections of the program. One pragma important to the imple-

mentation of the Dynamic Scheduler is the PRIORITY pragma. This

pragma specifies the priority of a task or of the main body. It takes an

argument which can be either an integer or an expression which eval-

uates to an integer. A task with a higher priority will be executed

before a task with a lower priority. The PRIORITY pragma may only

appear in the specification of a task or within the declarative part of

the main body.

Figure 5-4 is a sample Ada program that demonstrates the

use of the pragma PRIORITY. The priority for a task, if applicable, is

declared within the specification for that task. Notice that task Two,

although declared second, has a higher priority and, thus, should exe-

cute first. Because task One has the next lower priority, it should exe-

cute second. Because task Three and the main body have no declared

priority, there is no way to determine which will execute third and

fourth.

Figure 5-5 is a copy of the output produced when the pro-

gram in Figure 5-4 is executed. Note that the tasks were executed in

the expected order.

One disadvantage with tasks is that they cannot be separately

compiled. However, this problem is overcome by including a task

inside a package. The package can then be separately compiled, thus

accomplishing the desired result.

39

with TEXTIO; use TEXTIO;

procedure ExamplePriority is

task One is
pragma Priority (1);

end One;

task Two is
pragma Priority (2);

end Two;

task Three;

task body One is
begin

PUTLINE ('Task One executed.');
end One;

task body Two is
begin

PUTLINE ('Task Two executed.');
end Two;

task body Three is
begin

PUT_LINE ('Task THREE executed.');
end Three;

begin
PUT-LINE ('Main body executed.');

end ExamplePriority;

Figure 5-4. ExamplePriority Program

40

Task Two executed.
Task One executed.
Task Three executed.
Main body executed.

Figure 5-5. Output from the Example-Priority Program

The DELAY statement is used in Ada to suspend execution of

a task or main body. DELAY takes an argument which is a constant or

an expression that has a value of type DURATION. The value is

expressed as the number of or portion of seconds the task or main

body will be suspended. After a task is suspended by a DELAY state-

ment, other tasks, including the main body, may execute. However,

when the length of the delay is over, the task which was suspended

will be ready to execute when the processor is available.

Figure 5-6 illustrates how the DELAY statement is used. Task

Two prints a line of text to the screen and then delays for one-tenth of

a second. During this time, task One will be executed. After the time

specified in the delay statement has expired, task One is suspended

and task Two is resumed. The line of text after the DELAY statement

in task Thvo is then executed, and the loop is repeated indefinitely.

Figure 5-7 is the program Main again, but this time including Exam-

ple Delay. Figure 5-8 is a portion of the output produced by Main. This

portion is then repeated indefinitely.

41

with TEXTIO; use TEXT_10;

package Example-Delay is
task One is

pragma Priority (1);
end One;

task Two is
pragma Priority (2);

end Two;

end Example-Delay;

package body Example-Delay is
task body One is

begin
loop

PUTLINE ('One executing.,);
end loop;

end One;

task body Two is
beginloop

PUT-LINE ('Two entered before delay
statement.');

delay 0.1;
PUT-LINE ("Two executing after delay

statement.');
NEW-LINE;

end loop;
end Two;

end ExampleDelay;

Figure 5-6. Example.Delay Package

42

with Example-Delay;

procedure Main is
begin

null;
end Main;

Figure 5-7. Main Program With ExampleDelay Package

Two entered before delay statement,
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
Two executing after delay statement.

Figure 5-8. Output from Main Program
With ExampleDelay Package

2. The Dynamic Scheduler

The Dynamic Scheduler is implemented as a main program

called DynamicScheduler. It imports the packages containing the

tasks for StaticSchedule and the NonTimeCriticalOperators.

Because the Static Scheduler is not fully implemented, these tasks do

43

not yet exist. The theory behind the implementation of the Dynamic

Scheduler has been demonstrated by writing the small programs

discussed previously.

The function of the Dynamic Scheduler is to coordinate, the

execution of the two tasks of operators. Because the schedule for the

time-critical operators must begin at time zero, the StaticSchedule

task must be executed first. In order to insure this, the pragma

PRIORITY and the reserved word delay are used. The pragma

PRIORITY must be included in the specifications of the Static_

Schedule and NonTimeCriticalOperators tasks. As was seen in Fig-

ure 5-3, the pragma is included in the NonTimeCriticalOperators.

When the Static Schedule is written, it too must include a pragma

PRIORITY in the task specification. Because the Static_ Schedule must

be executed first, it must have a higher priority. This higher priority

will ensure that when the StaticSchedule is ready to resume

execution, it will be given control of the processor at the first available

opportunity. Refer to Figure 3-3. The coordination of the execution of

the operators in the two tasks is also obtained by having the delay

statement follow the execution of each operator. Note the delay

statement in the StaticSchedule is part of an if-elsif statement and is

only executed when time remains before the next operator must start

execution. It is this delay statement that suspends the execution of the

Static-Schedule and permits the NonTimeCriticalOperators to

execute. When the length of the delay is over, the StaticSchedule is

given the use of the processor at the first available opportunity. The

44

state of execution for both tasks is automatically restored by the

processor upon resumption of execution of the task.

3. The Debugging System for the Dynamic Scheduler

The debugging system for the Dynamic Scheduler has been

implemented as a task called DSDebug. Appendix B contains the code

for DSDebug. The specification for the task has six entry statements,

one for each expected error and two to indicate when the other tasks

have completed. This specification is shown in Figure 5-9.

task DSDebug is
entry RuntimeMETFailure (Exception-Operator: VSTRING);
entry Buffer_Underflow;
entry BufferOverflow;
entry Exception-Error;
entry NonjTimeCriticalOperatorsDone;
entry StaticScheduleDone;

end DSDebug;

Figure 5-9. Specification for DSDebug

The implementation for the body of DSDebug is similar to

that of SSDebug, except for the RuntimeMETFailure error. The

only difference in the implementation for the latter error is in the

actions performed by the accept statement. The user must be queried

as to whether to continue or to terminate execution of the prototype.

This interaction with the user occurs in a dedicated window on the

Sun Workstation. If the user wishes to terminate execution, an error

message is printed to the file called Information before termination

occurs, in a manner similar to that described for SSDebug.

45

On the other hand, if a user wants to continue execution,

adjustments must be made to the time and the new time returned to

the StaticSchedule. An error message is still printed to a file so as to

provide a historical record of needed modifications. Consideration

must be given to the fact that an operator may execute numerous

times. If an operator which frequently executes exceeds its MET, the

error message should not be repeatedly written to the file. To prevent

this from happening, a data structure called Operators-Overrun is

maintained.

OperatorsOverrun is a simple linked list whose nodes are

records. Each record contains three fields-one for the name of the

operator, one for the number of times it has executed and one for a

pointer to the next node. Therefore, when an operator exceeds its

runtime MET. it is compared to the OperatorsOverrun list to deter-

mine the appropriate action. If the operator does not appear in the

list. then a node for it is inserted and execution continues. If. on the

other hand, the operator appears in the list, and if it has executed less

than six times, the second field is updated and the execution of the

prototype continues. If. however.the operator appears in the list and it

has executed more than five times, then an error message is printed

stating that an operator with an invalid MET is executing too fre-

quently, and then execution of the prototype is terminated. Note that

the number five is an arbitrary limit. When familiarity is gamed with

the average number of times an operator may execute, this figure may

be revised.

46

DSDebug does have an inherent disadvantage. Because the

tasks for which it must rendezvous are imported, DSDebug cannot be

located inside the Dynamic Scheduler. If it were, it would not be visi-

ble to the StaticSchedule and to the NonTimeCriticalOperators

which would be declared before it. For this reason, DSDebug must be

separately compiled, and then the Static_ Schedule and the Non_

TimeCriticalOperators packages must include statements for

DSDebug.

In conclusion, the Dynamic Scheduler is implemented as a

main program which relies on imported packages to execute the

schedules at the appropriate times. The code for the Dynamic_

Scheduler is shown in Figure 5-10.

with Static-SchedulePKG;
--package containing Static Schedule

with NonTimeCritsPKG;
--package containing NonTimeCritical-Operators

procedure DynamicScheduler is
begin

null;
end DynamicScheduler;

Figure 5-10. The Dynamic Scheduler

47

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis provides an implementation for the Dynamic

Scheduler and debugging systems for the Execution Support System of

CAPS and describes the interactions among the units. The need to

divide the Execution Support System into the Static Scheduler Exe-

cution System and the Dynamic Scheduler was identified and imple-

mented. The thesis demonstrates how the Static Scheduler executes

in conjunction with a debugging system to process errors. It also

demonstrates how the Dynamic Scheduler can coordinate the execu-

tion of the critical and non-critical operators. The implementation is

based on the assumption that the Static Scheduler produces a Static

Schedule as described in the thesis. If this assumption proves incor-

rect when the static Scheduler is fully implemented, then the work in

this thesis will have to be re-examined in the new context.

Selecting Ada as the implementation language had a significant

effect on the feasibility of implementing both parts of the Execution

Support System. The existence of tasks in Ada allows the two sched-

ules of operators to execute in parallel, whether in a single-processor

environment or in a multi-processor environment. The delay state-

ment allows the execution of the Static Schedule to be suspended,

when applicable, and the NonTimeCriticalSchedule to be executed

In any open time slots. Additionally, the ability to separately compile

48

modules and then import these modules into another program

directly affected the implementation of the Dynamic Scheduler. Ada

has demonstrated its suitability as a programming language for real-

time embedded systems.

B. RECOMMENDATIONS

There are significant opportunities for future work in the aspects

of the Execution Support System covered in this thesis. One of the

important areas is the expansion of SSDebug to incorporate more

interaction with the user, especially with regard to correcting errors.

In particular, the possibility of correcting errors in timing constraints

during the validation phase of the Static Scheduler should be exam-

ined. The correction of as many errors as possible will make the envi-

ronment more responsive to the user.

Another possible area of work is to have both debugging systems

provide statistical information and debugging facilities. Debugging

facilities will support monitoring or tracing relevant information con-

cerning operator execution and displaying a record of events that

occurred during execution, including computed values and their asso-

ciated input and output times. Statistical information collected during

execution will include frequency of operator firing, number of excep-

tions occurring, and statistical data on timing parameters for critical

operators. [Ref. 5:p. 40]

A third area of interest is implementing the capability to process

hardware or operator interrupts. The Execution Support System

49

should be able to respond to an interrupt about equipment failure or to

an interrupt from the operator to abort execution.

50

APPENDIX A
PROGRAM CODE FOR

SSDEBUG

-- This program implements the debugging system for the Static Scheduler
-- in the Computer Aided Prolotyping System (CAPS). The program
-- consists of a procedure and two tasks. The procedure
-- Create_NTC_Task produces a file that contains an Ada
-- package which can be compiled. This package contains a task that
- will call the procedures to execute the operators. One of the tasks
-- is SSDebug. This task processes errors encountered during execution
-- of the second task, the Static-Scheduler. The code for the body of
-- this task is only partially complete. The procedure mentioned
-- earlier is only called if the StaticScheduler completes execution
-- Included in the FILES package, the library unit VSTRINGS is a generic
-- string package. It provides the data type VSTRING and also includes
-- procedues/functions to manipulate the strings. Since it is generic,
-- VSTRINGS must be instantiatd, and the new name must be made visible.
-- The FILEPRCOCESSOR package includes the procedures SEPARATEDATA and
-- VALIDATEDATA. The TOPOLOGICALSORTER package includes CREATE_LISTS and
-- SORT_REMAINING_OPERATORS.

with FILES;
with FILE_PROCESSOR;
with TOPOLOGICALSORTER;
use FILES;

procedure Main is

Exception-Operator: VARSTRING.VSTRING:=
VARSTRING.VSTR("");

-- The Create_NTC_Task procedure writes lines of
-- text to a file called Non_Time_Crits.a. The procedure also reads
-- lines from the file NONCRITS and writes them to the first file.

procedure CreateNTCTask is
Noncrits: FILETYPE: --name associated with NONCRITS file
Non_Time : FILETYPE; -- name associated with the NonTimeCriis.a

-- file
OperatorName: VSTRING;

begin
open (Noncrits, INFILE. "NON_CRITS");
create (Nonjime, OUT-FILE, "NonTimeCrits.a");

PUTLINE (Non-time, "with TL: --Translator package");
PUT_LINE (Non thne, "with DSDebugPKG; -- Debugging package"):
NEW-LINE (Nonjime);

51

PUT_LINE (Non-time, "package Non -TimeCrits-PKG is"):
PUTLINE (Nonjime," task NonTimeCritical-Operators is");
PUT _LINE (Nontime," pragma Priority (I);");
PUT_-LINE (Nonjime," end NonTime_-CriticaL-Operators;");
PUT_-LINE (Non-time, "end NonTimneCritsPKG;");
NEWLINE (Nonime);

PUT_-LINE (Non time, "package body Non_Time_CritsPKG is");
PUT-LINE (Nonjime, " task body NonTimeCriticaLOperators is");
PUT-LINE (Nonjime, " begin");

if ENDOFFILE (NoRt-crits) then
PUT-LINE (Noujtime," null;");

else
while NOT END _OF_FILE (Noncrits) loop

GET-LINE (Non-crits. Operator -Name);
PUT (Non-time, "
PUT (Nonjune, OperatorNamne);
PUL LINE (Non-time,"")

end loop;
end if-,

NEW-LINE (Non time):
PUT (Nonjime, " DSDebug.NonTimeCritical_");
PUT _LINE (Non time, "OperatorsDone;");
PUTLINE (Non-time, " end Non_-TimeCritical-Operators:");
PUTLLINE (Nonjtime, "end NonTime_Crits_PKG;");

close (Non crits);,
close (Non-time):

end CreateNTCTask;

The task specification for task SSDebug contains an entry
statement for each error that can be encountered by the
StaticScheduler task. The names of the entries correspond to
the names of the err ors. The last entry statement indicates that
the Static-Scheduler has successfully completed execution. The
parameter to the entry statement, where applicable, will provide
the name of the operator which caused the error.

task SSDebug is
entry METNotLessThanMRT (Exception..9perator: VSTRING),
entry METNotLessThanPeriod (ExceptionjlOperator: VSTRING);
entry No_initial_Lin&_Op;
entry No_-Matches..Found (Exception...Operator: VSTRING);
entry MCP_-Not_Lessjban..MRT (Exception_.Operator: VSTRING);
entry MET_NotLess~lhanMCP (Exception-..Operator: VSTRING);
entry No_Base_Block;
entry Fail_Half_Period (Exception-..Operator: VSTRING):
entry BadTotalTime;
entry RatioTooBig:

52

entry OverTime;
entry InvalidSchedule;
entry Schedule_Error;
entry METRequired (Exception-Operator: VSTRING);
entry METGTParent (Exception-Operator: VSTRING);
entry NELSum_GTParent (ExceptionOperator: VSTRING);
entry CritOp.Lacks.MET (Exception-Operator: VSTRING);
entry Static_SchedulerDone;

end SSDebug;

The task body of SS_Debug contains seventeen procedures - one for
each expected error. Each procedure will print an error message
to a file called Information. The two BOOLEAN variables control
or not the task will terminate. The task body consists of a select
loop that contains an accept block for each entry statement in the
specification. In this version, although any call to a accept
block will terminate execution of the task, the accept blocks were
placed in a loop with an eye to future revisions.

task body SSDebug is
Information: FILETYPE;
ErrorExists : BOOLEAN := false,
StaticSchedulerFinished : BOOLEAN := false;

procedure PrintMET_Not_Less_ThanMRTMessage (Information : FILETYPE;
ExceptionOperator : VSTRING) is

begin
PUT (Information. "EXECUTION TERMINATED ABNORMALLY.");
NEW.LINE (Information);
PUT (Information, "The maximum execution time (MET) is");
PUT (Information, "greater than or equal ");
NEW LINE (Information);
PUT (Information, "to the maximnu response time (MRT) for the");
PUT (Information. " operator. The");
NEW LINE (Information);
PUT (Information, "operator can only be scheduled for execution ");
PUT (Information, "if the MET");
NEW-LINE (Information);
PUT (Information, "is less than the MRT. The operator which ");
PUT (Information, "triggered the");
NEW LINE (Information):
PUT (Information, "error is:");
NEW LINE (Information);
PUT (Information, " ");
PUT (Information, ExceptionOperator);
NEW-LINE (Information):

end Print_MET_Not_LessThanMRTMessage;

procedure PrintMET_NotLessThanPeriodMessage
(Information : FILETYPE: Exception-Operator.: VSTRING) is

begin

53

PUT (Information, "EXECUTION TERMINATED ABNORMALLY.")
NEWLINE (Information).
PUT (Information, "The length of the execution time for the ");

PUT (Information. "following operator");
NEW-lINE (Information),
PUT (Information, "is greater than the length of time that must ");

PUT (Information, "pass before");
NEWLINE (Information);
PUT (Information, "the operator is executed again. For an
PUT (Information, "operator to");
NEWLINE (Information);
PUT (Information, "be scheduled for execution, its execution time");
PUT (information, "must be less");
NEWLINE (Information);
PUT (Information, "than its period.");
PUT (Information, "The operator which caused the error is:");
NEWLINE (Infornation):
PUT (Information, " ");
PUT (Information, Exception-Operator);
NEW-LINE (Information);

end PrintMETNotLessThanPeriodMessage;

procedure PrintNoInitialLinkOpMessage (Information: FILETYPE) is
begin

PUT (Information, "EXECUTION TERMINATED ABNORMALLY."):
NEWLINE (Information):
PUT (Information, "An operator could not be found that did ");

PUT (Information, "not have input"):
NEW LINE (Information),
PUT (Information, "into it. Such an operator must exist before ");
PUT (Information, "a schedule");
NEW LINE (Information);
PUT (Information, "can be built.");
NEW-LINE (Information);

end Print_No_Initial_Link_OpMessage;

procedure P,inq. _4aMat,.b-sFound_Message (Information : FILETYPE;
Exception-Operator: VSTRING) is

begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEWJINE (Information);
PUT (nformation, "The following operator does not match an");
PUT (information, "output").
NEW LINE (Information):
PUT (Information, "operator in a link statement. The ");
PUT (Information, "operator which");
NEWLINE (Information):
PUT (Information. "caused the error is:");
NEWLINE (Information):
PUT (Information," ");
PUT (Information, Exception-Operator).
NEWLINE (Information):

end Print_No_MatchesFowidMessage;

54

procedure PrintMCPNotLessThanMRT_Message (Information : FILE_TYPE;
ExceptionOperator : VSTRING) is

begin
PUT (Information. "EXECUTION TERMINATED ABNORMALLY.");
NEWLINE (Information);
PUT (Information, "The minimum calling period (MCP) is greater");
PUT (Information, " than or equal"),
NEWLINE (Information)-
PUT (Information, "to the maximum response time (MRT) for the ");
PUT (Information. "following operator.");
NEWLINE (Information);
PUT (Information, "For an operator to be scheduled, its MCP must ");
PUT (Information, "be less than");
NEWLINE (Information);
PUT (Information, "its MRT. The operator which caused the error");
PUT (Information, " is:"),
NEWLINE (Information);
PUT (Information. " ");
PUT (Information, ExceptionOperator);
NEW LINE (Information);

end PrintMCPNotLessTan_MRTMessage;

procedure PrintMETNotLessThanMCPMessage (Information : FILE_TYPE:
Exception-Operator: VSTRING) is

begin
PUT (information, "EXECUTION TERMINATED ABNORMALLY."),
NEW_LINE (Information)
PUT (Information, "The maximum execution time (MET) is greater"):
PUT (Information, " than or equal");
NEWLINE (Information):
PUT (Information. "to the minimum calling period (MCP) for the ");

PUT (Information. "following operator.");
NEWLINE (Information);
PUT (Information, "For an operator to be scheduled, its MET must ");
PUT (Information. "be less than");
NEWLINE (Information);
PUT (Information. "its MCP. The operator which caused the error");
PUT (Information, " is:");
NEWLINE (Information);
PUT (Information, " ");
PUT (Information, Exception-Operator);
NEW-LINE (Information);

end Print_METNotLessThanMCP.Message;

procedure Print_No_BaseBlockMessage (Information : FILE-TYPE) is
begin

PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEW-LINE (Information);
PUT (Information. "The base block could not be determined."):
NEW-LINE (Information);

end PrintNoBaseBlockMessage;

procedure PrintFailHalf_PeriodMessage (information : FILETYPE:

55

ExceptionOperator: VSTRING) is
begin

PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEW LINE (Information);
PUT (information, "The maximum execution time (MET) for the ");
PUT (Information, "following operator");
NEW LINE (Information);
PUT (Information, "is greater than or equal to half of the ");
PUT (Information, "operator's period.");
NEW-LINE (Information);
PUT (Information, "This relationship cannot hold for a static ");
PUT (Information, "schedule");
NEW-LINE (Information):
PUT (Information, "to be created. The operator which caused the");
PUT (Information, "error is:");
NEW LINE (Information);
PUT (Information, " "):
PUT (Information, ExceptionOperator);
NEWJLINE (Information);

end PrintFailHalfPeriodMessage;

procedure PrintBad_Total_TimeMessage (Information : FILE_.TYPE) is
begin

PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEW LINE (Information);
PUT (Information. "All operators in a block cannot be scheduled ");
PUT (Information. "according to");
NEW LINE (Information).
PUT (Information. "their timing constraints. This has been ");
PUT (Information. "determined by");
NEW-LINE (Information);
PUT (Information, "multiplying each operator's maximum "):
PUT (Information, "execution time");
NEW LINE (Information);
PUT (Information, "by the number of times it is supposed to be ");
PUT (Information. "scheduled within");
NEWLINE (Information):
PUT (Information, "the block (block length / operator period). ");
PUT (Information. "The sum");
NEW-LINE (Information);
PUT (Information, "over all the operators must be less than the "):
PUT (Information, "block length.");
NEWLINE (Information):

end PrintBadTotaLTimeMessage;

procedure PrintRatio_Too_BigMessage (Information : FILEJTYPE) is
begin

PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEWLINE (Information);
PUT (Information, "For a schedule to be created. an operator's "):
PUT (Information, "execution");
NEW-LINE (Information);
PUT (Information, "time divided by its period summed over all "):

56

PUT (Information, "operators must ");
NEW LINE (Information);
PUT (information, "be less than or equal to the number of");
PUT (Information, "processors available.");
NEWLINE (Information);
PUT (information, "This requirement has been violated, and a
PUT (Information, "Static Schedule");
NEW LINE (Information);
PUT (Information, "cannot be created.");
NEW-LINE (Information);

end Print_RatioTooBigMessage;

procedure PrintOverTimeMessage (Information: FILE_TYPE) is
begin

PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEW LINE (Information);
PUT (Information, "A static schedule cannot be created based on ");
PUT (Information, "the given");
NEW LINE (information);
PUTLINE (Information, "timing constraints.");

end Print_Over_TimeMessage;

procedure PrintInvalidScheduleMessage (Information: FILE_T'PE) is
begin

PUT (Information. "EXECUTION TERMINATED ABNORMALLY.");
NEW LINE (Information);
PUT (Information, "A static schedule cannot be created based on "):
PUT (Ifformation, "the given ");
NEW LINE (Information);
PUTLINE (Information. "timing constraints.");

end Print_InvalidScheduleMessage;

procedure PrintScheduleErrorMessage (Information: FILETYPE) is
begin

PUT (Information. "EXECUTION TERMINATED ABNORMALLY.");
NEW LINE (Information);
PUT (Information, "A static schedule cannot be created based on ");
PUT (Information, "the given");
NEWLINE (Information);
PUT LINE (Information, "timing constraints.");

end PrintSchedule_ErrorMessage;

procedure PrintMETRequiredMessage (Information : FILE_TYPE;
ExceptionOperator: VSTRING) is

begin
PUT_LINE (information, "EXECUTION TERMINATED ABNORMALLY.");
PUT (Information. "The following operator has a maximum ");
PUT (Information, "execution time (MET).");
NEWLINE (Information);
PUT (information, "However. in its decomposition, at least one "):
PUTLINE (Information, "of the operators")-
PUT (Information, "does not have an MET. The operator with the "):
PUT-LINE (Information. "incorrect ");

57

PUTLINE (Information. "decomposition is:");
PUT (Information," ");
PUT (Information, Exception-Operator);
NEW LINE (Information);

end Print_METRequiredMessage;

procedure Print_MET GT_ParentMessage (Information: FILETYPE;
ExceptionOperator : VSTRING) is

begin
PUTLINE (Information, "EXECUTION TERMINATED ABNORMALLY.");
PUT (Information, "An operator in a decomposition has a maximum ");
PUT (Information, "execution time");
NEW LINE (Information);
PUT (Information, "time that is greater than the pre-decomposed ");
PUT LINE (Information, "one. The "),
PUT LINE (Information, "pre-decomposed operator is:");
PUT (Information, " ");
PUTLINE (Information. Exception.Operator);

end PrintMETGT_ParentMessage;

procedure PrintMETSum_(GT ParentMessage (Information: FILE_TYPE,
ExceptionOperator: VSTRING) is

begin
PUT LINE (Information. "EXECUTION TERMINATED ABNORMALLY."):
PUT (Information, "An operator which has a maximum execution ");

PUT LINE (Information, "time has been");
PUT (Information, "decomposed. The sum of the execution times ");

PUTLINE (Information. "in the decomposition"):
PUT (Information. "is greater than the pre-decomposed operator's").
PUT LINE (Information, "execution time.");
PUT (Information, "This situation cannot occur. The operator "),
PUT LINE (Information, "whose execution time");
PUT LINE (Information. "was exceeded is:");
PUT (Information." ");
PUT-LINE (Information. Exception-Operator);

end PrintMetSumGTParent_Message

procedure PrintCriLOpLacksMET_Mcssage (Information : FILETYPE;
Exception.Operator: VSTRING) is

begin
PUT_- LINE (Information, "EXECUTION TERMINATED ABNORMALLY.");
PUT (Information, "Even though the following operator has some ");
PUTLINE (Information, "timing constraints,");
PUT (Information, "it does not have a maximum execution time. ");
PUTLINE (Information, "This situation");
PUT (Information, "cannot exist. The operator causing the error
PUTLINE (Information, "is:");
PUT (Information, " ");
PUT-LINE (hIformalion. Exception-Operator);

end PrintCritOp_Lacks..METMessage;

58

begin -- main body of task Debug
create (FILE => Information,

MODE => OUTJFELE,
NAME => "Information");

loop
select

accept METNotLessThanMRT (Exception-Operator:
VSTRING) do

Error_-Exists: true;
PrintMET_-NotLessThianMRL Message (Information,

Exception..Operator);
end MET_Not_Less_ThanMRT;

or
accept MEILNot_Less_TMhan_Period

(Exception..Operator: VSTRLNG) do
Error _Exists :=true;
PrintMETNotLess_-ThanPeriodMessage (Information,

ExceptionO.perator);
end METNotLessThan_Period:

or
accept Nojnitial.LinkOp do

ErrorExists: true;
Print_-No_-Initial_LinkOp-Message (Information);

end NojnitialLink_Op:
or

accept No-MatchesFound (Exception_.Operator: VSTRING) do
Error_-Exists: true;
PrintNoMatchesFound_Message (Information,

Exception-Operator);
end NoMatchesFound.

or
accept MCP-NotLess_Than_MRT (Exception-Operator: VSTRING) do

Error-Exists :=true;
PrintMCP_-NotLessThanMRT..Message (Information,

Exception-.Operator);
end MCPNot_Less,_ThanART:.

or
accept MIET -NotLess_Than_MCP (Exception...Operator: VSTRING) do

Effor-Exists: true,
PrintMIET_-Not_Less_ThanMCP...Message (Information,

ExceptionOperator);
end METNotLessThan-MCP;

or
accept NoBase_Block do

Error _Exists := true;
Print_-No_-Base..BlockMessage (Information);

end NoBaseeBlock:
or

accept Fail-HalfPeriod (Exception-Operator : VSTRING) do
Error _Exists: true;
Print_Fail_HaltPeriod..Mcssage (Information,

Exception-Operator):

59

end FailHalfPeriod:
or

accept BadTotalTime do
ErrorExists:= true'
PrintBad_TotalTimeMessage (Information);

end Bad_TotalTime;
or

accept Ratio_Too_Big do
ErrorExists := true-
PrintRatioTooBigMessage (Information);

end Ratio_TooBig;
or

accept Over-Time do
ErrorExists := true;
Print_Over_TimeMessage (Information);

end Over_Time;
or

accept InvalidSchedule do
ErrorExists:= true;
PrintInvalidScheduleMessage (Information);

end InvalidSchedule;
or

accept ScheduleError do
ErrorExists:= true.
PrintSchedule-ErrorMessage (information);

end ScheduleError;
or

accept MET-Required (Exception-Operator : VSTRING) do
ErrorExists:= trie;
PrintMETRequiredMessage (Information. Exception-Operator),

end METRequired;
or

accept MET_GT_Parent (Exception-Operator: VSTRING) do
ErrorExists := true;
PrintMETGTParentMessage (Information, ExceptionOperator);

end METGTParent:
or

accept METSum_GTParent (ExceptionOperator: VSTRING) do
ErrorExists:= true:
PrintMETSumGTParentMessage (Information,

ExceptionOperator);
end METSumGTParent;

or
accept CritOp_.LacksMET (Exception-Operator: VSTRING) do

ErrorExists:= true;
Print_Crit_Op_LacksMETMessage (Information.

ExcepfionOperator).
end CritOpLacksMET;

or
accept StaticSchedulerj)one do

StaticSchedulerFinished := true;
end StaticSchedulerDone;

end select;

60

if Error_-Exists or Slat ic_SchedulerFinished then
close (iformation);
exit-,

end it-.

end loop;
end SSDebug-

task StaticScheduler;

The task body is the main driver for the Static Scheduler. It
calls the procedures within the FILE_-PROCESSOR and
TOPOLOGICAL_-SORTER packages. When complete it will
also call the procedures within HARMONIC_BLOCK.BUILDER
and OPERATORSCHEDULER.

task body StaticScheduler is

LNKS :LINKSLIST.LIST,
OPS :OPERATORS_-LIST.NARYTREE;
ATOMICOPS: ATOMICLIST.LIST;
PRECE PRECEDENCELIST.LIST;

begin
FILEPROCESSOR.SEPARATEDATA(LNKS,OPS);
FILEPROCESSOR.VALLDATE_DATA(OPSATOMICOPS);
TOPOLOGICALSORTER .CREATE-L1STS(LNKS.PRECE),
TOPOLOGICALSORTER.SORTREMAININGOPERATORS(LNKS ,PRECE):.

exception
when FILEJPROCESSOR.CRIT_OP_LACKS_MEET =>

SS-Debug .Crit-Op-Lacks-MET;
when FILE_-PROCESSOR.MIETREQUIRED =>

SSJDebug. MET-Requi red;
when FILEPROCESSOR.METGTPARENfT =>

SSDebug.METGT_Parent.
when FILE_PROCESSOR.MET_-SUMGTPARENT =>

SSDebug.MIETSum_GThParent;
when FILEPROCESSOR.MET --NOTLESSTHANMRT =>

SS...Debug.MET_Not_Less_Than_MRT;
whcn FILE_-PROCESSOR.METNO1ULE-SS-HANPERIOD =>

SS...Debug.METNotLessThanPeriod;
when TOPOLOGICAL_-SORTERNO_-INMITIAL_LINKOP =>

SS-.Debug.No-InitialLinkOp:
when TOPOLOGICAL_-SORTERNOMATCHESFOUND =>

SS -Debug.NoMatches-Found;

end StaticScheduler:
end Main;

61

APPENDIX B
PROGRAM CODE FOR

DSDEBUGPKG

-- The GlobalDeclarations package contains an instantiation of the
-- generic unit VSTRINGS. The instantiation is called VARSTRING. The unit
-- contains the data type VSTRING and procedures/functions to manipulate
-- strings.
with GlobalDeclarations;
use Global_Declaratiaons;

with TEXT_10, CALENDAR;
use TEXT_10, CALENDAR;

-- The following package contains the debugging system for the Dynamic
-- Scheduler. Implemented as a task, the debugging system is called DSDebug
-- and processes errors identified during execution of both the time and
-- non-time critical operators.

package DSDebugPKG is
-- The specification for task DSDebug contains six entry statements.
-- The first four statements identify errors that may be enountered when the
-- operators execute. The last two entry statements identify when the
-- StaticSchedule and the NonTimeCritical§Operators tasks have completed.

task DSDebug is
entry RuntimeMETFailure (Exception-Operator: VARSTRING.VSTRING;

CurrentTime : in out TIME;
NextStart : TIME);

-- The in value for CurrentTime is the time the operator completed
-- execution. The out value for CurrentTime is the adjusted time
-- backgrounds. NextStart has as its value the time the next oper-
-- ator must start execution.

entry BufferUnderflow; --input queue empty
entry BufferOverflow; --output queue full
entry Exception-Error, --unprocessed exception
entry Static._ScheduleDone;
entry NonTimeCriticalOperators_Done;

end DSDebug;
end DSDebugPKG;

package body DSDebugPKG is
task body DSDebug is

type NODE;
type LINK is access NODE;

type NODE is
record

62

Operator: VARSTRING.VSTRING; --name of operator exceeding MET
Executedcount : NATURAL; --number of times operator has executed
Next : LINK;

end record;

Exception-Operator : VARSTRING.VSTRING; --operator causing error
Information: FILE-TYPE; --file containing error information
ErrorExists : BOOLEAN := FALSE;
StaticScheduleFinished : BOOLEAN :=FALSE;
NonTimeCriticalScheduleFinished: BOOLEAN:= FALSE;
Found: BOOLEAN:= FALSE; --indicates if operator already in list
Choice: CHARACTER := 'A'; --operator's decision as to continueAerminate
Operators .Overrun: LINK:= null; --list of operators that have exceeded

-- their MET
Current : LINK; --pointer to operator in list
Difference : DURATION; --time over MET
MaxExecutions : CONSTANT NATURAL:= 5; --maximum number of times an

--operator whose MET is exceeded
--can operate

The Find procedure identifies whether the operator is in the list.
Name contains the name of the operator with the runtime error. If the
operator is in the list, Current will point to it. If the operator is
not in the list, Current will point to the last node in the list. The
value of Found will identify if the operator is already in the list.

procedure Find (Head : in LINK; Name : in VARSTRING.VSTRING;
Current : in out LINK; Found : out BOOLEAN) is

begin
Current := Head;

if Current = null then --if no nodes in list
Found := FALSE;

elsif Current.Next = null then --if only one node in list
if VARSTRING.equal (Current.Operator, Name) then

Found := TRUE;
else

Found := FALSE;
end if;

else --traverse list
while Current.Next /= null

loop
if VARSTRING.equal (Current.Operator, Name) then

Found := TRUE;
end if;
Current := Current.Next;

end loop;

-- when traversing list, the last node will not be examined.
-- following "if' ensures last node examined
if Current.Next = null then

63

if VARSTRING.equal (Current-Operator, Name) then
Found:= TRUE;

else
Found:= FALSE;

end if;
end if;

end if;
end Find;

The Insert procedure will place a node at the end of the list. The
node will contain the name of the operator with the error and the number
of times the operator has executed. The number is initialized to one.

procedure Insert (Head: in out LINK; Name : VARSTRING.VSTRING) is
TempPt : LINK;
New_Node: LINK;

begin
NewNode:= new NODE' (Name, I, null);

if Head = null then
Head:= New-Node;

else
TempPt := Head;
while TempPt.Next /= null

loop
TempPt := Temp_Pt.Next;

end loop;
TempPt.Next:= NewNode;

end if;
end Insert;

The next five procedures print an error message to the file Informa-
tion. The name of each procedure indicates the name of the error it is
processing. The last procedure is called when an operator has excecuted
more frequently than the permitted number of executions (for an operator
exceeding its MET).

procedure PrintBufferUnderflowMessage (Information : FILE-TYPE) is
begin

PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEWLINE (Information);
PUT (Information, "There was an attempt to read a data buffer ");
PUT (Information, "that");
NEW-LINE (Information);
PUT (Information, "contained no data.");
NEWLINE (Information);

end PrintBuffer_UnderflowMessage;

procedure PrintBufferOverflow_Message (Information : FILE-TYPE) is
begin

64

PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEWLINE (Information);
PUT (Information, "There was an attempt to store data into a ");
PUT (Information, "data buffer");
NEWLINE (Information);
PUT (Information, "that was already full.");
NEWLINE (Information);

end PrintBuffer._OverflowMessage;

procedure PrintExceptionError Message (Information: FILE-TYPE) is
begin

PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEWLINE (Information);
PUT (Information, "One exception was not processed when another ");
PUT (Information, "one was");
NEWLINE (Information);
PUT (Information, "raised.");
NEW-LINE (Information);

end PrintExceptionError_Message;

procedure PrintRuntimeMETFailureMessage (Information: FILETYPE;
Exception-Operator: VARSTRING.VSTRING) is

begin
PUT (Information, "EXECUTION HAS BEEN SUSPENDED OR HAS ");
PUTLINE (Information, "TERMINATED ABNORMALLY");
NEW LINE (Information);
PUT (Information, "The following operator did not complete ");
PUT (Information, "execution ");

NEW LINE (Information);
PUT (Information, "before its maximum execution time was ");
PUTLINE (Information, "expired. The operator");
PUT (Information, "which caused the error is:");
NEW LINE (Information);
PUT (Information," ");
VARSTRING.PUT (Information, Exception-Operator);
NEW LINE (Information);
NEW LINE (Information);

end PrintRuntime_MET_FailureMessage;

procedure PrintTooManyExecutionsMessage (Information : FILETYPE;
ExceptionOperator: VARSTRING.VSTRING) is

begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
PUT (Information, "The following operator, which executes ");
PUTLINE (Information, "frequently, has a maximum");
PUT (Information, "execution time that is not long enough. ");
PUT-LINE (Information, "Execution has been");
PUT (Information, "terminated because processing time is being ");
PUTLINE (Information, "wasted by having");
PUT (Information, "to handle the error each time the operator ");
PUT-LINE (Information, "executes. The operator is:");
PUT (Information, " ");
VARSTRING.PUTLINE (Information, Exception-Operator);

65

end PrintTooManyExecutionsMessage;

The following procedure is called when an operator first exceeds its
MET. The procedure queries the user as to whether to terminate or not.
The user is given three attempts to input valid data - either A or B.
If he has not provided valid data, the procedure will return a value --
of A to terminate execution. Also, the procedure will print a message
stating that execution has been terminated due to invalid input.

procedure ObtainUserChoice (Exception-Operator: VARSTRING.VSTRING;
Choice : in out CHARACTER) is

Count : INTEGER;

procedure PrintToo_ManyTriesMessage is
begin

NEW LINE;
PUT ("You exceeded the number of attempts authorized to ");
PUT ("enter data.");
NEW_LINE;
PUT ("Therefore, execution of the prototype has been ");
PUT ("terminated.");
NEW _LINE;

end PrintTooManyTriesMessage;

begin
Count := 1;
NEW LINE;
NEWLINE;
PUT ("Execution of the prototype has been suspended because an");
NEW LINE;
PUT ("operator exceeded its maximum execution time. The");
NEW LINE;
PUTLINE ("operator causing the error is: ");
PUT (" ");
VARSTRING.PUT (ExceptionOperator);
NEWLINE;
NEW_LINE;
PUT_- LINE ("Do you want to ");
PUT.LINE ("A. Terminate execution of the prototype?");
PUT ("B. Adjust the execution time of the operator and continue");
NEWLINE;
PUT (" execution of the prototype?");
NEWLINE;
NEWLINE;
PUTLINE ("Type the letter preceding the option you want.");

loop
GET (Choice);
NEW_- LINE;
NEWLINE;

66

if Choice = 'a' then
Choice:= 'A';

end if,

if Choice = 'b' then
Choice 'B';

end if;

exit when Choice = 'A' or Choice= 'B' or Count= 3;

PUT ("You typed: ");
PUT (Choice);
NEWj.INE;
PUTLINE ("You must type either A or B.");

Count:= Count + 1;
end loop;

if Choice /= 'A' and Choice /= 'B' then
Choice := 'A';
PrintTooManyTriesMessage;

end if;
end ObtainUserChoice;

begin -- main body of task DSDebug
create (FILE => Information,

MODE => OUTFILE,
NAME => "Information");

loop
select

accept BufferUnderflow do
ErrorExists := true;
Print Buffer_UnderflowMessage (Information);

end BufferUnderflow;
or

accept BufferOverflow do
ErrorExists := true;
PrintBufferOverflow-Message (Information);

end Buffer_Overflow;
or

accept Exception-Error do
Error_Exists := true;
PrintException- Error_.Message (Information);

end Exception-Error
or

accept RuntimeMET_Failure
(ExceptionOperator: VARSTRING.VSTRING;
Current_Time : in out TIME;
NextStart : TIME) do

67

Find (OperatorsOverrun, Exception-Operator, Current, Found);
--is operator in Operators-Overrun list?

if Found then --check number of executions
--if operator executed less than that authorized, update
if Current.Executed_count <= MaxExecutions then

Current.Executedcount := Current.Executedcount + 1;
else --terminate and print error message

ErrorExists := true;
PUTLINE ("EXECUTION TERMINATED ABNORMALLY.");
PrintTooMaay_.Executions_Message (Information,

Exception-Operator);
end if;

else --query user as to terminate/continue
ObtainUser_Choice (Exception Operator, Choice);

case Choice is
when 'A' => ErrorExists :=true; --terminate
when 'B' => Insert (OperatorsOverrun,

Exception.Operator);
--insert operator into Operators_Overrun list

when others => null;
end case;

PrintRuntime_MET_FailureMessage (Information,
Exception-Operator);

--print error message first time operator exceeds MET
end if;

Difference:= Current_Time - Next-Start;
--calculate time over MET

CurrentTime := CurrentTime - Difference;
--reset time to the start time of the next operator

end RuntimeMETFailure;
or
accept StaticScheduleDone do

Static_Schedule_Finished := true;
end StaticScheduleDone;

or
accept NonTime_Critical-Operators_Done do

Non_TimeCriticalOperatorsFinished := TRUE;
end Non-Time-CriticalOperatorsDone;

end select;

if Error._Exists or (StaticSchedule_Finished and
Non_Time_CriticalOperatorsFinished) then

close (Information);
exit;

end if;

end loop;
end DSDebug;

end DsDebug.PKG;

68

LIST OF REFERENCES

1. Booch, G., Software Engineering With Ada, 2nd ed., The Benjamin/
Cummings Publishing Company, Inc., 1986.

2. Whitten, J. L., Bentley, L. D.,and Ho, T. I. M., Systems Analysis and
Design Methods, Times Mirror/Mosby College Publishing, 1986.

3. Luqi and Ketabchi, M., "A Computer-Aided Prototyping System,"
IEEE Software, pp. 66-72, March 1988.

4. Discussion among Software Engineering with Ada class, 29 July
1988.

5. Luqi. Rapid Prototyping for Large Software System Design, Ph.D.
Dissertation, University of Minnesota, Duluth, Minnesota, May
1986.

6. Raum. H., The Design and Implementation of an Expert User Inter-
face for the Computer Aided Prototyping System Master's Thesis,
Naval Postgraduate School, Monterey, California, December 1988.

7. Thorstenson, R.. A Graphical Editor for the Computer Aided Proto-
typing System (CAPS), Master's Thesis, Naval Postgraduate School,
Monterey, California, December 1988.

8. Galik. D., A Conceptual Design of a Software Base Management
System for the Computer Aided Prototyping System, Master's The-
sis. Naval Postgraduate School, Monterey, California. December
1988.

9. Moffitt I, C.. A Language Translator for a Computer Aided Rapid
Prototyping System, Master's Thesis, Naval Postgraduate School,
Monterey, California, March 1988.

10. Altizer, C., Implementation of a Language Translator for a Computer
Aided Rapid Prototyping System Master's Thesis, Naval Postgrad-
uate School, Monterey, California, December 1988.

11. Janson, D. M., A Static Scheduler for the Computer Aided Proto-
typing System: An Implementation Guide, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1988.

69

12. O'Hern, J. T., Conceptual Level Design for a Static Scheduler for
Hard Real-Time Systems, Master's Thesis. Naval Postgraduate
School, Monterey, California, March 1988.

13. Marlowe, L,, A Scheduler for Critical Timing Constraints, Master's
Thesis, Naval Postgraduate School, Monterey, California, Decem-
ber 1988.

14. Isoda, S., Shimomura, T., and Ono, Y., "VIPS: A Visual Debugger."
IEEE Software, pp. 8-18, May 1987.

15. Seviora, R. E., "Knowledge-Based Program Debugging Systems,"
IEEE Software, pp. 20-31, May 1987.

16. Knudsen, J. L., "Better Exception-Handling in Block-Structured
Systems," IEEE Software, pp. 40-49, May 1987.

17. Diederich, J., and Milton, J., "Experimental Prototyping in Small-
talk," IEEE Software, pp. 50-64, May 1987.

70

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Office of Naval Research
Office of the Chief of Naval Research
ATN: CDR Michael Gehl, Code 1224
800 N. Quincy Street
Arlington, VA 22217-5000

4. Space and Naval Warfare Systems Command
ATrN: Dr. Knudsen, Code PD 50
Washington, DC 20363-5100

5. Ada Joint Program Office I
OUSDRE(R&AT)
Pentagon
Washington, DC 20363-5100

6. Naval Sea Systems command
ATTN: CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, DC 20363-5100

7. Office of the Secretary of Defense
ATTN: CDR Barber
STARS Program Office
Washington, DC 20301

8. Office of the Secretary of Defense
ATTN: Mr. Joel Trimble
STARS Program Office
Washington, DC 20301

71

9. Commanding Officer
Naval Research Laboratory
Code 5150
ATrN: Dr. Elizabeth Wald
Washington, DC 20375-5000

10. Navy Ocean System Center
ATTN: Linwood Sutton, Code 423
San Diego, CA 92152-5000

11. National Science Foundation
ATTN: Dr. Wiliam Wulf
Washington, DC 20550

12. National Science Foundation
Division of Computer and Computation Research
ATr'N: Dr. Tom Keenan
Washington, DC 20550

13. National Science Foundation
Director, PYI Program
ATTN: Dr. C. Tan
Washington, DC 20550

14. Office of Naval Research
Computer Science Division, Code 1133
ATIN: Dr. Van Tilborg
800 N. Quincy Street
Arlington, VA 22217-5000

15. Office of Naval Research
Applied Mathematics and Computer Science, Code 1211
ATTN: Mr. J. Smith
800 N. Quincy Street
Arlington, VA 22217-5000

16. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
ATTN: Dr. Jacob Schwartz
1400 Wilson Boulevard
Arlington, VA 22209-2308

17. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
ATTN: Dr. Squires
1400 Wilson Boulevard
Arlington, VA 22209-2308

72

18. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
ATTN: MAJ Mark Pullen, USAF
1400 Wilson Boulevard
Arlington, VA 22209-2308

19. Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, VA 22209-2308

20. Defense Advanced Research Projects Agency (DARPA)
Director, Strategic Technology Office
1400 Wilson Boulevard
Arlington, VA 22209-2308

21. Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, VA 22209-2308

22. Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, VA 22209-2308

23. COL C. Cox, USAF
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, DC 20318-8000

24. LTC Kirk Lewis, USA
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, DC 20318-8000

25. U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE
ATrN: Mr. Samuel A. DiNitto, Jr.
Griffis Air Force Base, NY 13441-5700

73

26. U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE
ATrN: Mr. William E. Rzepka
Griffis Air Force Base, NY 13441-5700

27. Professor Luqi, Code 52LQ
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

28. MaryLou Wood
NARDAC, NAS Jacksonville
Jacksonville, FL 32212-0111

74

